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Error of Approximation in Case of
Definite Integrals

Rajesh Kumar Sinha, Satya Narayan Mahto, Dhananjay Sharan

Abstract— This paper proposes a method for computation of error of approximation involved in case of evaluation of integrals
of single variable. The error associated with a quadrature rule provides information with a difference of approximation. In
numerical integration, approximation of any function is done through polynomial of suitable degree but shows a difference in
their integration integrated over some interval. Such difference is error of approximation. Sometime, it is difficult to evaluate the
integral by analytical methods Numerical Integration or Numerical Quadrature can be an alternative approach to solve such
problems. As in other numerical techniques, it often results in approximate solution. The Integration can be performed on a
continuous function on set of data.

Index Terms— Quadrature rule, Simpsons rule, Chebyshev polynomials, approximation, interpolation, error.
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1  INTRODUCTION

O evaluate  the  definite  integral  of  a  function  that
has no explicit antiderivative of whose antideriva-
tive  is  not  easy  to  obtain;  the  basic  method  in-

volved in approximating is numerical quadrature [1]-
[4].
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f x dx . The methodolo-

gy  for  computing  the  antiderivative  at  a  given  point,
the polynomial ( )p x approximating the function ( )f x
generally oscillates about the function. This means that
if ( )y p x over estimates the function ( )y p x in one
interval then it would underestimate it in the next in-
terval [5]. As a result, while the area is overestimated
in  one  interval,  it  may  be  underestimated  in  the  next
interval so that the overall effect of error in the two
intervals will be equal to the sum of their moduli, in-
stead the effect of the error in one interval will be neu-
tralized to some extent by the error is the next interval.
Therefore, the estimated error in an integration formu-
la  may  be  unrealistically  too  high.  In  view  to  above
discussed facts, the paper would reveal types of ap-
proximation following the condition ‘best’ approxima-

tion for a given function, concentrating mainly on po-
lynomial approximation. For approximation, there is
considered  a  polynomial  of  first  degree  such  as
y a bx a good approximation to a given function
for the interval (a, b).

2 PROPOSED METHOD

2.1 Reflection on Approximation
This section cover types of approximation following
the condition ‘best’ approximation for a given func-
tion, concentrating mainly on polynomial approxima-
tion.  In  this  for  approximation,  there  is  considered  a
polynomial of first degree such as y a bx ; a good
approximation to a given continuous function for the
interval (0, 1).
Under the assumption of given concept two following
statements may be considered as,
The Taylor polynomial at 0x  (assuming (0)f exists)

(0) (0)y f xf                                                                (2)

The interpolating polynomial constructed at 0x
and 1x .

(0) [ (1) (0)]y f x f f           (3)

A justification may be laid that a Taylor or interpolat-
ing polynomial constructed at some other point would
be more suitable. However, these approximations are
designed to initiate the behavior of f at only one or two
points.
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Since, the polynomial of first degree in x as shown
above y a bx follows a good approximation to f
throughout the interval (0,1). Now, for values of a and
b , the  required  mathematical  exists  such  as

max
0 1

( ) ( )
x

f x a bx is minimized over all choices of

two values a and b . This expression is said as mini-
max (or Chebyshev) approximation. Instead of mini-
mizing the minimum error between the (continuous)
function f and the approximating straight-line, the
process  of  maximizing  ‘sum’  of  the  moduli  of  the  er-
rors may be undertaken.

For values of a and b ,
1

0

( ) ( )f x a bx dx is mini-

mized that is called a base 1L approximation. It should
be noted that the 1L approximation provides equal
weight to all the errors, while the minimax approxima-
tion approximate in the error of largest modulus.
Again, stressing on other approximation f which  in  a
sense, lies between the extremes of 1L and minimax
approximation.  Also,  for  a  fixed  value  of 1p , two
values a and b are formed so that
1

0

( ) ( )
p

f x a bx dx is minimized and therefore would

be suggested as best PL  approximation. The above
maximized  expression  followed  that  due  to  the  pres-
ence of the thP power,  the  error  of  largest  modulus
tends to  dominate  as  p increases  with f  continuous.  It
can be shown that, as p the best PL approxima-
tion tends to the minimax approximation which is
therefore sometimes called the best L approximation.
Thus the PL approximations consist of a spectrum
ranging from the 1L to the minimax approximations.
Further, for1 p , 2L approximation, is the only
commonly used and is better known as the best square
approximation.

2.2 Generalized case for approximation under
certain interval
This section would reveal for giving light on consider-
ation of methods of approximating to f , given the
values of ( )f x at certain points. If p  is same polynomi-
al, approximation to f an application of p  would exist
an approximation to f . However, there is need to be
careful; the maximum modulus of ( ) ( )f x p x  on  a
given interval (a, b) can be much larger than the max-

imum modulus of ( ) ( )f x p x .
To make an evident proof for a given statement an as-
sumption is made

2( ) ( ) 10 ( )nf x p x T x         (4)

Where ( )nT x  is  a  polynomial  of  degree n  in x  with

leading term 12n nx for 0n . The nT  are  known  as
Chebyshev polynomials, the Russian mathematician P.
L. Chebyshev (1821 -1894) who has contributed the
equation (4) for the difference between of the first ap-
proximation  and  the  polynomial.  Now,  to  determine
the turning value, of nT  the derivative

sin( ) cos
sinn

d d d n nT x n
dx d dx

(5)

Since
1 1

sin
d

dxdx
d

          (6)

i.e. 2sin sin( )
sin sinn

n n nT x n
n

                        (7)

but
0

sin 1Lt          (8)

Thus 2(1)nT n                                                       (9)

It  can be shown that  this  is  the  maximum modulus of
nT  on  (-1,  1).  If 10n ,  say,  the  maximum  modulus  of

210f p  on (-1, 1) whereas 1f p . Furthermore,
the consideration of an approximation f  and  the  po-
lynomial np that interpolates the approximation f  at

distinct point 1 ............ nx x . If such happens then there

exists a number x  (depending  on x ) in certain inter-
val (a, b) such that

( 1)

0 1
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( ) ( ) ( )( )..........( )
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where 1 0 1( ) ( )( ).........( )n nx x x x x x x .
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Thus equation (11) is known as error that exists in fol-
lowing statement. If (a, b) is any interval and also con-
tains (n +1) points 0 1, , ,....... nx x x x . Suppose further it is

assumed that f , .......... nf f exist and are continuous

on the interval (a, b) and 1nf  exists for a x b  then

the error holds as shown in equation (11). Thus, 1nf ex-
ists  on  some  interval  (a,  b)  which  is 0 1 2, , , ,...., nx x x x x .

Here, the number ( , )x a b  (depending  on x). Diffe-
rentiating (11) with respect to x ,

( 1)
( 1)1

1
( )( )( ) ( ) ( ) ( )

( 1) ( 1)

n
nn

n n x
xf x df x p x x f

dxn n
(12)

In general, there is nothing further to state about the
second term on the right of equation (12). We can not
perform the differentiation with respect to x
of ( 1)( )n

xf , since x  is  an  unknown  function  of x .

Thus, for Integral values of x  given in equation (12) is
unless for determining the accuracy with which np

approximately to f .  However,  if  we restrict x  to one
of the values 0 1, , ....... nx x x , then 1( ) 0n x  and the un-

known second term on the right of equation (12) be-
comes zero.

( 1)

1

( )
( ) ( ) ( )

( 1)

n
r

r n n r

f
f x p x x

n
                                 (13)

Where r  has been considered when rxx . Now,

applying forward difference to express the polynomial
( )np x   in given form such that

0( ) ( )n np x p x sh                                                          (14)

2
0 0 0 0( ) .......

1 2
n

n

s s s
p x f f f f

n
          (15)

Since 0x x sh                                                              (16)

i.e. dx h
ds

                                                                       (17)

Also

0( ) ( )n np x p x sh                                                          (18)

Differentiating both sides with respect to x ,

0( ) ( )n n
ds dp x p x sh
dx ds

                                               (19)

2
0 0 0 0

1( ) ....
1 2

n
n

s s sdp x f f f f
dx nds
ds

                                                                                          (20)

2
0 0 0

1 1( ) (2 1) .....
2

n
n

sdp x f s f f
nh ds

     (21)

To calculate 1n ,

1( ) ( ) ( )n r rj r
x x x x x                                             (22)

where 1n  would be obtained by means of differen-

tiating equations (22) such that

)()()()()(1 rrjrjrjrn xx
dx
dxxxxxx

dx
dx

                                                                                         (23)

By putting rx x , the second term on the right of equa-
tion (22) becomes zero.

Thus 1( ) ( ) ( 1) !( )!n r n
n jj r

x x x h r n r            (24)

Since
( )r jx x r j h                                                              (25)

From (13)
( ) ( 1)!( )!( ) ( ) ( 1) ( )

( )!
n r n n

r n r r
r n rf x p x h f

n r
            (26)

Furthermore, investigating the case of polynomial, an
interpretation hold that polynomials are sufficiently
accurate for many approximation and interpolation
tasks.

2.3 Degree of Accuracy
Now  the  degree  of  accuracy  of  quadrature  formula  is
the  largest  positive  integer  n  such  that  the  formula  is
exact for kx , for each 0,1,....k n . The Trapezoidal and
Simpson’s rule have degrees of precision one and
three, respectively. Integration and summation are li-
near operations; that is,
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( ( ) ( )) ( ) ( )
b b b

a a a

f x g x dx f x dx g x dx               (27)

0 0 0
( ( ) ( )) ( ) ( )

n n n

i i i i
i i i

f x g x f x g x               (28)

For each pair of integral functions f  and g  and each
pair  of  real  constants.  This  implies  that  the  degree  of
precision  of  a  quadrature  formula  in  n  if  and  only  if
the error ( ( )) 0E p x  for all polynomials ( )p x  of  de-
gree 0,1,....k n , but ( ( )) 0E p x for some polynomial

( )p x  of degree 1n .

3 CONCLUSION

Increasing, the degree of the approximating polynomi-
al dose not guarantees better accuracy. In a higher de-
gree polynomial, the coefficients also get bigger which
may magnify the errors. Similarly, reducing the size of
the sub-interval by increasing their number may also
lead to accumulation of rounding errors. Therefore a
balance should be kept between the two, i.e. degree of
polynomial  and  total  number  of  intervals.   These  are
the primary motivations for studying the techniques of
numerical integration/quadrature [6]-[9]. In case of
Simpson’s rule technique individually to the subinter-
vals [ ,( ) 2]a a b  and [( ) 2 , ]a b b ; use error estimation
procedure to determine if the approximation to the
integral on subinterval is within a tolerance of 2 . If
so,  then  sum  the  approximations  to  procedure  an  ap-
proximation of function f x  over interval ,a b
within the tolerance .  If  the  approximation on one of
the subintervals fails to be within the tolerance 2 ,
then that subinterval is itself subdivided, and the pro-
cedure is reapplied to the two subintervals to deter-
mine if the approximation on each subinterval is accu-
rate to within 4 . This halving procedure is continued
until each portion is within the required tolerance.
Thus, Numerical analysis is the study of algorithms
that use numerical approximation for the problems of
continuous functions [10]-[12]. Numerical analysis con-
tinues this long tradition of practical mathematical cal-
culations. Much like the Babylonian approximation,
modern numerical analysis does not seek exact an-
swers, since the exact answers are often impossible to
obtain in practice. Instead, much of numerical analysis
is concerned with obtaining approximate solutions
while maintaining reasonable bounds on errors. It
finds applications in all fields of engineering and the

physical sciences.
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